

MIREMAR Conference

New Methods for the Safe Disposal of Unexploded Ordnances

in the North- and Baltic Sea

Neumünster, 18. November 2010

Franz Eder, CEO ANT Applied New Technologies AG

Table of contents

- Introduction of ANT
- 2. Problem of dumped amunition
- 3. Search and survey of munitions
- 4. Separation and salvage
- 5. Defusing the bombs
- 6. Transport and destruction
- 7. Resumé

ANT Applied New Technologies AG

The Global Market Leader
for
Mobile Abrasive Cutting Equipment
(WASS)

Water Abrasive Suspension System (WASS)

Water Abrasive Injection System (WAIS)

- water 90 %

- abrasive 10 %

"dirty water"

202	air	90	<u>%</u>
	water	6	%
	ahraciyo	Λ	0/

abrasive 4 %

"dirty air"

Water Abrasive Suspension System (WASS)

Water Abrasive Injection System (WAIS)

(technology used by ANT)

- + no air in the jet (safe for explosives!)
- + works under rainy conditions
- + cutting under water
- + Abrasive mixing unit is off site (up to 1.000m and more)
- + easy manipulation (less strength, 1 hose!)

EOD system

(technology used by e.g. Flow Intl. Corp.)

- Air in the jet (not safe for explosives)
- Not reliable under rainy conditions
- No cutting under water
- Abrasive hopper unit is close to UXO (max. 20m)
- extensive manipulation(3 times heavier, 2 hoses!)

Cutting under water up to 600 m depth

EOD / IEDD Products

ANT-Products for a remote render safe process

EOD: MACE

High Pressure Pump

Abrasiv Mixing Unit

IEDD: mini MACE

Complete system

MACE Applications

cutting out the fuse

Cut through the fuse of a phosphor bomb

A cut out long delay fuse (on a Brit. GP 500)

cut of a tail end (with fuse)

2. Problem of dumped ammunition

Far more than 100 dumpsites of unexploded munitions in Europe

Lethal risk for workers in the fishing industry!

e.g. Three Dutch fisherman killed in April 2005 by II WW bomb

corrosion will continue, leakage of toxic agents will increase

Easy access because of the low water depth (0-30 m) of a lot of dump sites

3. Search and survey of munitions

Survey of unexploded munitions with ROV's

e.g. Comanche ROV from Marin Mätteknik AB, Sveden (so far over 2500 km for the North Stream Pipeline Project!)

Using a combination of various sensoric and acoustic systems

4. Separation and Salvage

Separation and salvage of light munitions with ROV's

Using ROV's from offshore service companies

Separation and Salvage of heavy munitions off the sea floor

e.g. with robotics from Underwater Ordinance Recovery Inc.

5. Defusing the bombs

Defusing the bombs under water with MACE

e.g. cutting off the rear section with the fuse (Brit. GP 1000 lbs bomb)

Defusing the bombs on a barge with MACE

e.g. cutting out a fuse at the screw thread (US GP 500 bomb)

6. Transport and Destruction

Offshore on special built barges

(Dynasafe Concept)

- Based on adaptation of proven technologies
- Zero handling of munitions after recovery

Using Dynasafe SDC (Static Detonation Chamber)

Using existing onshore facilities

e.g. Geka mbH, Munster

transport, storage, demilitarisation and destruction

www.geka-munster.de

7. Resumé – Recovery (avoiding Detonations!)

- Proven technologies are available for recovery
- Companies are ready to start
- Political will is required to fund a reference project
- At least to clean up the hot spots in shallow waters

Thank you for your attention!

ANT Applied New Technologies AG
Franz Eder (CEO)

Hinter den Kirschkaten 32

23560 Lübeck / Germany

Tel. +49 (0) 451 - 5 83 80-90

Fax. +49 (0) 451 - 5 83 80-99

E-Mail: f.eder@ant-ag.com

www.ant-ag.com

